
AD-fl13l 306 RESEACH ON INTERACTIYE ACQUISITION AND USE OF
KNOWLEDGE(U) SRI INTERNATIONAL MENLO PARK CA
M E STICKEL MAY 83 N039-80-C-0575

UNCLASSIFIED F/G 9/2 N

EhmmomhEEmomiE

1111 1j,8

gio

V..
&.

21111.6

IIIIL25 11n11 u -61

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

* *.. ". ;Oi t 9 9 O 0 O -. 9 9

-, . -. -- -.

RESE.kRCH ON INTERACTIVE ACQUISITION
AND USE OF KNOWLEDGE

(.0 Interim Report for the Period July 1982-January 1983

SRI Project 1894

May 1983

Edited by: Mark E. Stickel, Senior Computer Scientist
Artificial Intelligence Center
Computer Science and Technology Division

Prepared for:
AUG 12 983~

Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Boulevard A
Arlington, Virginia 22209,-i'

Attention: Cmdr. Ronald B. Ohlander ,PPRWL ,* .

Preparation of this paper was supported by the Defense Advanced Research Projects
Agency under Contract N00039-80-C-0575 with the Naval Electronic SystemsCommand.

gnL The views and conclusions contained in this document are those of the authors and

C should not be interpreted as representative of the official policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or the United States

L~j government.

88 1% 2f3 AMA6

%i 333 Ravenswood Ave, . Menlo Park, CA 94025
C (415) 859-6200 TWXI 910-373-2046 Telex: 334 486

83 08 08 107

Contents

Page

1. Introduction....... 1

2. Sentence Disambiguation by a Shift-Reduce Parsing Technique 3

2.1 Introduction 3
2.2 The Phenomena to be Modeled. 4
2.3 The Parsing System.........................

2.3.1 Differences from the Standard LR Techniques 7
2.3.2 Preterminal Delaying. 7
2.3.3 The Disambiguation Rules 9
2.3.4 Some Examples 10
2.3.5 Lexical Preference. 11

*2.3.8 Garden-Path Sentences. 13
2.4 Conclusion 13
Appendix I. The Test Grammar 14
Appendix H. Sample Runs 14

*3. Building in Equational and Nonequational Theories. 17

3.1 Introduction. 17
3.2 Demodulation 17
3.3 Special Unification. 19
3.4 Extended Matching for Nonequational Theories 22

References 26

1. Introduction

SRI International is engaged in a long-term effort under DARPA sponsorship to

conduct basic research on artificial intelligence problems central to the construction of computer

systems that can participate in extended dialogues in natural language with their users, Such

dialogue capabilities are crucial to providing systems that can interact with users, providing

information about the system's capabilities and knowledge and aiding the user in solving

problems requiring information held by the system. A central thrust to our research is that

the system be able to acquire new concepts, facts, and vocabulary through dialogues with

the users. It is equally important that the system not be limited to querying for individual

facts-as is the case, for example, with database query systems. Rather this research provides

a base for constructing systems that can engage in extended interactions to determine what

a user intends (including when this differs from what he literally requests), and that provide

responses appropriate to a particular user and discourse situation. Among the core capabilities

of these systems are those for reasoning about the knowledge, goals, and plans of other agents

where these other agents may be users or other computer sys -

This report covers work done on the KLAUS (Knowldge-Learning and sing System)

project during the period July 1982 to January 1983. Wo-wezr- eveloping

two aspects of KLAUS: the natural-language-processing component and the deduction system
component

Section 2 (by Stuart M. Shieber) discusses a parsing technique whose behavior

resembles human behavior in the intepretation of certain problematical types of sentences.

Native speakers of English show definite and consistent preferences for certain readings of syn-

tactically ambiguous sentences. A user of a natural-language-processing system would naturally

expect it to reflect the same preferences. Thus, such systems must model in some way the

linguistic performance as well as the linguietic competence of the native speaker. We have de-

veloped a variant of the LALR(I) shift-reduce algorithm that models the preference behavior of

1€ 'p

. •7

native speakers for a range of syntactic--. ference phenomena reported in the psycholinguistic

literature, including the recent data on lexical preferences. The algorithm yields the preferred

parse deterministically, without building multiple parse trees and choosing among them. As

a side effect, it displays appropriate behavior in processing the much discussed garden-path

sentences. The parsing algorithm has been implemented and has confirmed the feasibility of

our approach to the modeling of these phenomena.

Section 3 (by Mark E. Stickel) discusses elements of the incorporation of equational

and nonequational theories into the nonclausal connection-graph resolution theorem-proving

program being used as the KLAUS deduction system. Incorporation of theories at a low level

in the deduction system by means of simplification, special unification, and extended matching

can reduce the size of the search space and the length of proofs, thereby substantially increasing

the effectiveness of the deduction system. Proofs may also be more natural and readable. Three

main techniques are presently being used for building in theories. Demodulation and special

unification are used for building in equational theories. Demodulation is extended to simplify

atomic formulas as well as terms allowing fast mandatory unit resolution and subsumption.

Special unification is used to implement associative and/or commutative functions with or

without identity. A coding trick is used to require a variable to match a single subterm of an

associative term, thus permitting selection of single elements of sets without the need to make

a distinction between simple and fragment variables. Nonequational theories such as partial

or total orderings and taxonomic relationships can also be built in by extending the matching

process. Unlike the extension of unification for equational theories, building in nonequational

theories requires that the matching process take account of the polarities of the matched wffs

and possibly return a wff as a result along with a substitution. This can be implemented by

controlled hyperresolution, in which hyperresolution-like operations are specified for wffs of the

theory while ordinary resolution operations are employed elsewhere.

2

2. Sentence Disambiguation by a Shift-Reduce Parsing Technique

2.1. Introduction

For natural-language-processing systems to be useful, they must assign the same

interpretation to a given sentence that a native speaker would, since that is precisely the

behavior users will expect. Consider, for example, the case of ambiguous sentences. Native
speakers of English show definite and consistent preferences for certain readings of syntactically

ambiguous sentences [Ki73, FF78, FBK82]. A user of a natural-language-processing system

would naturally expect it to reflect the same preferences. Thus, such systems must model in

some way the linguistic performance as well as the linguistic competence of the native speaker.

This idea is certainly not new in the artificial-intelligence literature. The pioneering

work of Marcus [Ma80 is perhaps the best known example of linguistic-performance modeling

in Al. Starting from the hypothesis that "deterministic" parsing of English is possible, he

demonstrated that certain performance constraints, e.g., the difficulty of parsing garden-path

sentences, could be modeled. His claim about deterministic parsing was quite strong. Not only

was the behavior of the parser required to be deterministic, but, as Marcus claimed,

The interpreter cannot use some general rule to take a nondeterministic
grammar specification and impose arbitrary constraints to convert it to a
deterministic specification (unless, of course, there is a general rule which
will always lead to the correct decision in such a case). [Ma8O, p.14]

We have developed and implemented a parsing system that, given a nondeterministic

grammar, forces disambiguation in just the manner Marcus rejected (i.e. through general rules);

it thereby exhibits the same preference behavior that psycholinguists have attributed to native

speakers of English for a certain range of ambiguities. These include structural ambiguities

[FF78, FF80, WaSO] and lexical preferences JFBK82I, as well as the garden-path sentences as

a side effect. The parsing system is based on the shift-reduce scheduling technique of Pereira

[Pe82].

3

.

4

Our parsing algorithm is a slight variant of LALR(1) parsing and, as such, exhibits the

three conditions postulated by Marcus for a deterministic mechanism: it is data-driven, reflects

expectations, and has look-ahead. Like Marcus's parser, our parsing system is deterministic.

Unlike Marcus's parser, the grammars used by ours can be ambiguous.

2.2. The Phenomena to be Modeled

The parsing system was designed to manifest preferences among structurally distinct

parses of ambiguous sentences. It does this by building just one parse tree-rather than building

multiple parse trees and choosing among them. Like the Marcus parsing system, ours does not

do disambiguation requiring "extensive semantic processing," but, in contrast to Marcus, it

does handle such phenomena as PP-attachment insofar as there exist a priori, preferences for

one attachment over another. By a priori we mean preferences that are exhibited in contexts

where pragmatic or plausibility considerations do not tend to favor one reading over the other.

Rather than make such value judgments ourselves, we defer to the psycholinguistic literature

(specifically [FF78], [FF801 and [FBK821) for our examples.

The parsing system models the following phenomena:

Right Association Native speakers of English tend to prefer readings in which con-
stituents are "attached low." For instance, in the sentence

Joe bought the book that I had been trying
to obtain for Susan.

the preferred reading is one in which the prepositional phrase "for
Susan" is associated with "to obtain" rather than "bought."

Minimal Attachment On the other hand, higher attachment is preferred in certain cases
such as

Joe bought the book for Susan.

in which "for Susan" modifies "the book" rather than "bought."
Frazier and Fodor [FF78] note that these are cases in which the higher

attachment includes fewer nodes in the parse tree. Our analysis is
somewhat different.

Lexical Preference Ford et at. [FBK82] present evidence that attachment preferences
depend on lexical choice. Thus, the preferred reading for

The woman wanted the dress on that rack.
41

4

• ., -..- -.,-. .,.-. _ .'

has low attachment of the PP, whereas

The woman positioned the dress on that rack.

has high attachment.

Garden-Path Sentences
Grammatical sentences such as

The horse raced past the barn fell.

seem actually to receive no parse by the native speaker until some sort
of "conscious parsing" is done. Following Marcus [Ma80], we take this
to be a hard failure of the human sentence-processing mechanism.

It will be seen that all these phenomena are handled in our parser by the same general

rules. The simple context-free grammar used1 (see Appendix I) allows both parses of the

ambiguous sentences as well as one for the garden-path sentences. The parser disambiguates

the grammar and yields only the preferred structure. The actual output of the parsing system

can be found in Appendix II.

2.3. The Parsing System

The parsing system we use is a shift-reduce parser. Shift-reduce parsers [AJ74] are

a very general class of bottom-up parsers characterized by the following architecture. They

incorporate a stack for holding constituents built up during the parse and a 8hift-reduce table

for guiding the parse. At each step in the parse, the table is used for deciding between two

basic types of operations: the hiaft operation, which adds the next word in the sentence (with

its preterminal category) to the top of the stack, and the reduce operation, which removes

several elements from the top of the stack and replaces them with a new element-for instance,

removing an NP and a VP from the top of the stack and replacing them with an S. The elate

of the parser is also updated in accordance with the shift-reduce table at each stage. The

combination of the stack, input, and state of the parser will be called a configuration and will

be notated as, for example,

IWe make no claims as to the accuracy of the sample grammar, which is obviously a gross simplification of
English syntax. Its role is merely to show that the parsing system is able to disambiguate the sentences under
consideration correctly.

en5

4..

stack: NP V input: Mary atate: 10

where the stack contains the nonterminals NP and V, the input contains the lexical item Mary,

and the parser is in state 10.

By way of example, we demonstrate the operation of the parser (using the grammar

of Appendix I) on the oft-cited sentence "John loves Mary." Initially the stack is empty and

no input has been consumed. The parser begins in state 0.

stack: input: John loves Mary state: 0

As elements are shifted to the stack, they are replaced by their preterminal category.2 The

shift-reduce table for the grammar of Appendix I states that in state 0, with a proper noun as

the next word in the input, the appropriate action is a shift. The new configuration, therefore,

is

stack: PNOUN input: loves Mary state: 4

The next operation specified is a reduction of the proper noun to a noun phrase, yielding

";s[tack: NP input: loves Mary sate: 2

The verb and second proper noun are now shifted, in accordance with the shift-reduce table,

thus exhausting the input, and the proper noun is then reduced to an NP.

stack: NP V input: Mary * 0ete: 10

atack: NP V PNOUN input: etate: 4

stack: NP V NP input: state: 14

Finally, the verb and noun phrase on the top of the stack are reduced to a VP

stack: NP VP input: etate: 8

which is in turn reduced, together with the subject NP, to an S.

2But see Section 2.3.2 for an exception.

8

I.
sttack: S Tinput: stat:1

This final configuration is an accepting configuration, since all the input has been consumed

and an S derived. Thus, the sentence is grammatical according to the grammar of Appendix

I, as expected.

2.3.1 Differences from the Standard LR Techniques

The shift-reduce table mentioned above is generated automatically from a context-

free grammar by the standard algorithm [AJ74]. The parsing algorithm differs, however, from

the standard LALR(1) parsing algorithm in two ways. First, instead of assigning preterminal

symbols to words as they are shifted, the algorithm allows the assignment to be delayed if the

word is ambiguous among preterminals. When the word is used in a reduction, the appropriate

preterminal is assigned.

Second, and most importantly, since true LR parsers exist only for unambiguous

grammars, the normal algorithm for deriving LALR(1) shift-reduce tables yields a table that

may specify conflicting actions under certain configurations. It is through the choice made

from the options in a conflict that the preference behavior we desire is engendered.

2.3.2 Preterminal Delaying

One key advantage of shift-reduce parsing that is critical in our system is the fact

that decisions about the structure to be assigned to a phrase are postponed as long as possible.

In keeping with this general principle, we extend the algorithm to allow the assignment of

a preterminal category to a lexical item to be deferred until a decision is forced upon it, so

to speak, by an encompassing reduction. For instance, we would not want to decide on the

preterminal category of the word "that," which can serve as either a determiner (DET) or

complementizer (THAT), until some further information is available. Consider the sentences

That problem is important.

7

- - - - - -- -- - --~ - -.

That problems are difficult to solve is im-

portant.

Instead of assigning a preterminal to "that," we leave open the possibility of assigning either

DET or THAT until the first reduction that involves the word. In the first case, this reduction

will be by the rule NP - DET NOM, thus forcing, once and for all, the assignment of DET as

preterminal. In the second case, the DET NOM analysis is disallowed on the basis of number

agreement, so that the first applicable reduction is the COMP S reduction to S, forcing the

assignment of THAT as preterminal.

Of course, the question arises as to what state the parser goes into after shifting

the lexical item "that." The answer is quite straightforward, though its interpretation vis i

via the determinism hypothesis is subtle. The simple answer is that the parser enters into a

state corresponding to the union of the states entered upon shifting a DET and upon shifting a

THAT, respectively, in much the same way as the deterministic simulation of a nondeterministic

finite automaton enters a "union" state when faced with a nondeterministic choice. Are we

then merely simulating a nondeterministic machine here? The answer is equivocal. Although

the implementation acts as a simulator for a nondeterministic machine, the aondeterminism

is a priori bounded, given a particular grammar and lexicon. 3 Thus, the nondeterminism

could be traded in for a larger, albeit still finite, set of states, unlike the nondeterminism

found in other parsing algorithms. Another way of looking at the situation is to note that

there is no observable property of the algorithm that would distinguish the operation of the

parser from a deterministic. one. In some s there is no interesting difference between the

limited nondeterminism of this parser and Marcus's notion of strict determinism. In fact, the

implementation of Marcus's parser also embodies a bounded nondeterminism in much the same

way this parser does.

The property that discriminates between this parser and that of Marcus is a slightly

different one, namely, the property of quasi-real-time operation.4 By quasi-real-time operation,

3The boundedness comes about because only a finite amount of information is kept per state (an integer) and
the nondeterminism stops at the preterminal level, so that the splitting of states does not propagate.

41 am indebted to Mitch Marcus for this observation and the previous comparison with his parser.

8

,o e ." o" .° o .- * . o .- o o .o .o o• °. ." ..° .• .° • -..- -..--. ., • o° -... ...• ." " :o

• .• • ,. %. .. o -.° I , ° . ° " - ' - • •
°

, • ". . .

-7w;

Marcus means that there exists a maximum interval of parser operation for which no output

can be generated. If the parser operates for longer tF An this, it must generate some output. For

instance, the parser might be guaranteed to produce output (i.e., structure) at least every three

words. However, because preterminal assignment can be delayed indefinitely in pathological

grammars, there may exist sentences in such grammars for which arbitrary numbers of words

need to be read before output can be produced. It is not clear whether this is a real disadvantage

or not, and, if so, whether there are simple adjustments of the algorithm that would result in

quasi-real-time behavior. In fact, it is a property of bottom-up parsing in general that quasi-

real-time behavior is not guaranteed. Our parser has a less restrictive but similar property,

fairnea--namely, our parser generates output that is linear in the input, though there is no

constant over which output is guaranteed. For a fuller discussion of these properties, see Pereira

and Shieber [PS-].

To summarize, preterminal delaying, as an intrinsic part of the algorithm, does not

actually change the basic properties of the algorithm in any observable way. Note, however,

that preterminal assignments, like reductions, are irrevocable once they have been made (as a

by-product of the algorithm's determinism). Such decisions can therefore lead to garden paths,

as they do for the sentences presented in Section 2.3.6.

We now discuss the central feature of the algorithm, namely, the resolution of shift-

reduce conflicts.

2.3.3 The Disambiguation Rules

Conflicts arise in two ways: ahift-reduce conflicts, in which the parser has the option

of either shifting a word onto the stack or reducing a set of elements on the stack to a new

element; reduce-reduce conflicts, in which reductions by several grammar rules are possible.

The parser uses two rules toresolve these conflicts:5

5The original notion of using a shift-reduce parser and general scheduling principles to handle right association
and minimal attachment, together with the following two rules, are due to Fernando Pereira [Pe82j. The
formalization of preterminal delaying and the extensions to the lexical-preference cases and garden-path
behavior are due to the author.

9

'U

.- .- r r r . ' . . -C . W - "

(1) Resolve shift-reduce conflicts by shifting.

(2) Resolve reduce-reduce conflicts by performing the longer reduction.

These two rules suffice to engender the appropriate behavior in the parser for cases

of right association and minimal attachment. Though we demonstrate our system primarily

with PP-attachment examples, we claim that the rules are generally valid for the phenomena

being modeled [PS-].

2.3.4 Some Examples

Some examples demonstrate these principles. Consider the sentence

Joe took the book that I bought for Susan.

After a certain amount of parsing has been completed deterministically, the parser will be in

the following configuration:

a8tack: NP V NP that NP V input: for Susan st ate: 23

with a shift-reduce conflict, since the V can be reduced to a VP/NP8 or the P can be shifted.

The principles presented would solve the conflict in favor of the shift, thereby leading to the

following derivation:

stack: NP V NP that NP V P input: Susan (stte:12j
stack: NP V NP that NP V P NP input: state: 19

[stack: NP V NP that NP V PP input: state: 24

[stack: NP V NP that NP VP/NP input: state: 22
s tack: NP V NP that S/NP input: s tate: 161

stack: NP V NP input: state: 7

stack: NP V NP input: st ate: 14

OThe 'slash-category" analysis of long-distance dependencies used here is loosely based on the work of Gazdar
[GaSl]. The Appendix I grammar does not incorporate the full range of slashed rules, however, but merely a
representative selection for illustrative purposes.

10

stack: NP VP inpu: state: 6
,stack: Sipt: state: I

which yields the structure

[sJoe[vptook!Np[Npthe book][ythat I bought for Susan]]]]

The sentence

Joe bought the book for Susan.

demonstrates resolution of a reduce-reduce conflict. At some point in the parse, the parser is

in the following configuration:

stack: NP V NP PP input: state: 20

with a reduce-reduce conflict. Either a more complex NP or a VP can be built. The conflict is

resolved in favor of the longer reduction, i.e., the VP reduction. The derivation continues:

stack: NP VP input: state: 6

stack: S input: state: 1

ending in an accepting state with the following generated structure:

Is Joe[vpbought[N pthe book][ppfor Susan]]

2.3.5 Lexical Preference

To handle the lexical-preference examples, we extend the second rule slightly.

Preterminal-word pairs can be stipulated as either weak or strong. The second rule becomes

11

(2) Resolve reduce-reduce conflicts by performing the longest reduction with the strongest

lefimoat stack element.7

Therefore, if it is assumed that the lexicon encodes the information that the triadic

form of "want" (V2 in the sample grammar) and the dyadic form of "position" (VI) are both

weak, we can see the operation of the shift-reduce parser on the "dress on that rack" sentences

of Section 2. Both sentences are similar in form and will thus have a similar configuration

when the reduce-reduce conflict arises. For example, the first sentence will be in the following

configuration:

stack: NP wanted NP PP -input: state: 20

In this case, the longer reduction would require assignment of the preterminal category V2 to

"want," which is the weak form; thus, the shorter reduction will be preferred, leading to the

derivation

stack: NP wanted NP input: state: 14

stack: NP VP input: state: 6

atack: S input: state: 1

and the underlying structure

[sthe woman fvpwanted[NP[Ntpthe dress][ppon that rack]]l

In the case in which the verb is "positioned," however, the longer reduction does not yield the

weak form of the verb; it will therefore be invoked, resulting in the structure

[sthe woman[vppositioned[Npthe dress][ppon that rackl]

7 Note that strength taken precedence over length.

12

2.3.6 Garden-Path Sentences

As a side effect of these conflict resolution rules, certain sentences in the language

of the grammar will receive no parse by the parsing system just discussed. These sentences

are apparently the ones classified as "garden-path" sentences, a class that humans also have

great difficulty parsing. Marcus's conjecture that such difficulty stems from a hard failure of

the normal sentence-processing mechanism is directly modeled by the parsing system presented

here.

For instance, the sentence

The horse raced past the barn fell.

exhibits a reduce-reduce conflict before the last word. If the participial form of "raced" is

weak, the finite verb form will be chosen; consequently, "raced past the barn" will be reduced

to a VP rather than a participial phrase. The parser will fail shortly, since the correct choice

of reduction was not made.

"* Similarly, the sentence

That scaly, deep-sea fish should be under-

water is important.

will fail, though grammatical. Before the word "should" is shifted, a reduce-reduce conflict

arises in forming an NP from either "That scaly, deep-sea fish" or "scaly, deep-sea fish." The

longer (incorrect) reduction will be performed and the parser will fail.

Other examples, e.g., "the boy got fat melted," or "the prime number few" would

be handled similarly by the parser, though the sample grammar of Appendix I does not parse

them [PS-J.

2.4. Conclusion

To be useful, natural-language systems must model the behavior, if not the method,

of the native speaker. We have demonstrated that a parser using simple general rules

13

k.

for disambiguating sentences can yield appropriate behavior for a large class of perfor-

mance phenomena-right association, minimal attachment, lexical preference, and garden-path

sentences-and that, morever, it can do so deterministically without generating all the parses

and choosing among them. The parsing system has been implemented and has confirmed the

feasibility of our approach to the modeling of these phenomena.

Appendix I. The Test Grammar

The following is the grammar used to test the parsing system descibed in the paper.

Not a robust grammar of English by any means, it is presented only for the purpose of

establishing that the preference rules yield the correct results.

S - NP VP VP -. AUX VP 9/NP - that S/NP

S -- VP VP - VO S/NP - VP

NP -- DET NOM VP -VI NP S/NP - NP VP/NP

NP - NOM VP -V2 NP PP VP/NP - VI

NP -PNOUN VP - V3 INF VP/NP - V2 PP

NP - NP S/NP VP - V4 ADJ VP/NP - V3 INF/NP

NP - NP PARTP VP - VS PP VP/NP - AUX VP/NP

NP - NP PP 9-- that S INF/NP - to VP/NP

DET - NP's INF - to VP

NOM - N PP - P NP

NOM - ADJ NOM PARTP - VPART PP

Appendix II. Sample Runs

>> Joe bought the book that I had been trying to obtain for Susan

Accepted: [s
(np (pnoun Joe))
(vp
(vi bought)
(np
(np (det the)

14

(nom (n book)))
(sbar/np
(that that)
(s/np
(np (pnoun I))
(vp/np
(aux had)
(vp/np (aux been)

(vp/np (v3 trying)
(inf/np (to to)

(vp/np (v2 obtain)
(pp (p for)

(np (pnoun Susan]

>> Joe bought the book for Susan

Accepted: [s (np (pnoun Joe))
(vp (v2 bought)

(np (det the)
(nom (n book)))

(pp (p for)
(np (pnoun Susan]

>> The woman wanted the dress on that rack

Accepted: [s (np (det The)
(nom (n woman)))

(vp (vl wanted)
(np (np (det the)

(nom (n dress)))
(pp (p on)

(np (det that)
(nom (n rack]

>> The woman positioned the dress on that rack

Accepted: [s (np (det The)
(nom (n woman)))

(vp (v2 positioned)

(np (det the)
(nom (n dress)))

(pp (p on)

(np (det that)
(nom (n rack]

>> The horse raced past the barn fell

15

Parse failed. Current configuration:
state: (1)

stack: <(0)> [s (np (det The)
(nom (n horse)))

(vp (v5 raced)
(pp (p past)

(np (det the)
(nom (n barn]

input: (vO fell)

(end)

>> That scaly deep-sea fish should be underwater is important

Parse failed. Current configuration:
state: (1)

stack: <(0)> [s [np (det That)
(nom (adj scaly)

(nom (adj deep-sea)
(nom (n fish]

(vp (aux should)
(vp (v4 be)

(adj underwater]

input: (v4 is)
(adj important)
(end)

1J

,r~~~~. "-. " -

3. Building in Equational and Nonequational Theories

3.1. Introduction

This section describes continuing work on a nonclausal connection-graph resolution

theorem-proving program for the first-order predicate calculus [St82]. The dominant concern

in this research is to develop computationally effective reasoning techniques for concepts that

are embcdied in natural-language-understanding applications.

Using a general purpose theorem-proving program with an axiomatization of the

domain for a natural-language-understanding application is unlikely to yield acceptable per-

formance in the absence of specifications detailing how the axioms are to be used. Our current

theorem-proving program has facilities for heuristic search and some control specification ex-

pressed by the use of special logical connectives [Mo82J. We have now added to the program

a number of other facilities to improve performance that complement the heuristic search and

control specification facilities. Demodulation is used to simplify terms and special unification
is used to build in associativity and commutativity. We are also developing extended matching

techniques for building in nonequational theories, just as demodulation and special unification

are used for building in equational theories [P172].

3.2. Demodulation

Demodulation [WR67 is the powerful technique of keeping all terms simplified with

respect to a list of ordered equalities called demodulators. This reduces the size of the terms

and, because equivalent terms may be simplified to the same term, facilitates subsumption. (A

complete set of reductions [KB70,La75,HueS0,Hul80,PS81j is essentially a list of demodulators

that is guaranteed to simplify equivalent terms to the same term.) Demodulation can also be

used as a programming mechanism for a variety of purposes [W82, such as counting symbol

occurrences in expressions, classifying expressions, etc.

17

LA.

We extend demodulation slightly beyond its conventional usage by permitting atomic

formulas as well as terms to be simplified. In principle, demodulators can be written to

perform arbitrary simplifications. We allow term-term, atom-atom, and atom-truth-

value simplifications. Simplifications of the form atom-term, etc. are illogical; atom-wff

simplifications are useful (e.g., for expanding definitions) but presently unimplemented; it is

expensive to check the applicability of wff-wff simplifications and many useful cases can be

anticipated and programmed directly (e.g.,A A -A - false.)

Simplifications of the form atom-truth-value are particularly useful. For example, if

A -- true and B --o false are demodulators, the clauses -A V C and B V C can be simplified to

C and AVC and -BVC can be simplified to true-the effect is either that of a mandatory unit

resolution operation plus subsumption of the parent clause or (using tautology elimination) of

subsumption of the clause by a unit.

Such immediate, mandatory resolution and subsumption operations without retention

of intermediate results account for much of the success of predicate calculus theorem proving by

the Knuth-Bendix procedure [KB70,La75,Hue8,Hul81,PS81] with a complete set of reductions

for Boolean algebra [Hs811.

Demodulation provides a mechanism for implementing procedural attachment: the

right-hand side of the demodulator specifies the compututation of a new expression for all ex-

pressions matching the left-hand side. This can be used to incorporate numerical computations.

(Winker and Wos [WW821 also use demodulation to perform arithmetic operations, notably in

counting demodulators.) Furthermore, it can be used to attach code that imposes constraints,

such as requiring a set of variables to have distinct values.

Forward demodulation is the use of demodulators to simplify wils derived after the

demodulator was created. Backward demodulation is the use of a newly added demodulator

to simplify previously existing wE,. Only forward demodulation is used at present. Backward

demodulation appears to be significantly less effective than forward demodulation for the

following reasons:

* The most effective demodulators are often provided before the start of the proof and

18

.9

will thus be available for use in forward demodulation. Only demodulators generated in

the course of the proof can be used for backward demodulation; these are often more

specific and less powerful than those initially provided.

If a wff that can be, but is not, backward-demodulated is resolved upon, then, except for

the atom resolved upon, instances of all the atoms that can be backward-demodulated

will appear in the resolvent and can be forward-demodulated as well. Thus, although

the wff is not demodulated by a new demodulator, its descendants derived after the

addition of the new demodulator will be.

3.3. Special Unification

The incorporation of concepts such as ssociativity, commutativity, and idempotence

into the unification algorithm has great potential for eliminating explicit equality reasoning,

facilitating subsumption by recognizing nonidentical but equivalent terms, and generally reduc-

ing the size of the search space. Among the many special unification algorithms developed

[RS79], the most pervasively useful ones are those for associativity and/or commutativity with

or without identity [LS75, LS76, Si7, Si78, St77, St8l], and it is these that have so far been

implemented for this theorem prover.

Using special unification to handle such concepts as associativity and commutativity

is clearly the best available approach. Alternatives require axiomatizing the properties using

the equality relation, e.g., f(z, V) - f(y, z) and f(f(z, v), z) - fix, flv, z)), or using some

alternative encoding of the function, e.g., P(z, V, z) D P(V, z, z) and P(z, v, u) A P(, z, v) A
P(u, z, w) D P(z, v, wu) (and P(z, v, u) A P(y, z, v) A P(z, v, w) D P(u, z, w) for the "other half"

of the associative law), where P(z, &, z) means f(z, V) - z.

Using the equality relation to axiomatize such properties requires that equality reason-

ing be employed in the deduction system. In many instances, ausociativity and commutativity

might provide the only requirement for equality reasoning. Because reasoning about equality

by using resolution plus the equality axioms is notoriously inefficient, and even using special

19

,'-~~~~~~~~~~~~~~~~~~..--..,-,o...-...... -...- . •. . .- ,.-....._....,.-..,, .*..,

equality inference rules often results in an unmanageably large search space, it would be pru-

dent to avoid equality-based axiomatizations of such concepts.

Using alternative encodings, such as P(z, v, z) for f(z, V) - z, often does result

in greater efficiency than using equality based axiomatizations, but the alternative encoding

obscures the meaning of the -wffs, and the search space is still likely to be quite large because

of the universal applicability of assertions containing atoms like P(z, V, z), which match any

complementary literal with predicate symbol P.

Because associativity and/or commutativity are not built in primitively, the sys-

tem does not recognize that, for example, fia, f(6, c)), f(a, f(c, b)), f(1(b, c), a), fif(c, 6), a),

f(b, f(a, c)), ... , (the equivalent set of expressions encoded using the P predicate looks even

worse) are all equivalent and it is sufficient to use only one of them.

Building in properties like associativity and commutativity solves these difficulties.

Although the branching factor of special unification algorithms is greater than that for ordinary

unification (which always returns either no unifier or a single unifier whereas special unification

may return an arbitrary number of unifiers), the situation is still a vast improvement over

the extremely redundant, high-branching-factor search space present when associativity and

commutativity are axiomatized.

Building in associativity and commutativity has usefulness well beyond the obvious

mathematical applications such as handling the symmetry of equality and the associativity

and commutativity of addition and multiplication. A nonmathematical example of the use-

fulness of building associativity and commutativity into the unification algorithm, suggested

by use of the theorem prover in natural-language-understanding applications, is the use of

-,T(K(z,w,n),p)) -iT(K(Ker(z,V),w,n),p) written as part of a formulation of mutual

knowledge [Ap82]. It roughly states that, if proposition p is not known by agent z, p is not

common knowledge of agents z and v. If this implication is applied in a forward direction, it

generates an infinite sequence of results unkls Ker is treated as associative and commutative-

in which case the first application of the axiom results in a formula that subsumes all the rest,

eliminating an infinite branch in the search space.

20

S. s

Sets can be represented by using the associative-commutative function act with iden-

tity: (a, b, c) is represented by est(a, b, c). The idempotence of sets can be handled either by

(1) using a demodulator *et(x, x, V) - set(x, V), which eliminates redundant elements, or (2)

declaring 8ct to be idempotent. The former is easier and is preferable if, in unifying (z, y}

and (a, b, c), z and V are to be assigned disjoint sets of elements. However, if z and y must be

assigned all sets of values such that their union is (a, b, c}, then act should be declared to be

idempotent, and associative-commutative-idempotent unification with identity [LS78J should

be used.

It is often necessary to select a single element of a set rather than (as in unifying

{x, V} and (a, b, c)) decompose a set into two parts, neither of which is required to be a

single element. In Al programming languages [He72,RD72], this problem is solved by making

a distinction among variables: simple variables match single elements; fragment variables can

match zero or more. If the set (a, b, c) is encoded as 8ct(el(a), el(b), el(c)), this distinction is

unnecessary. If a variable is required to match a single element of the set, it is enclosed in el. For

example, x E (a, b, e) can be expressed by in(z, set(el(a), cl(b), e(c))) and single element values

for x can be nondeterministically selected by unification with the axiom in(z, set(cIz), V)).

In our implementation of associative and/or commutative unification with or without

identity, we have imposed some restrictions on the unification algorithm that result in some

loss of logical completeness.

First, we constrain associative unification to not return all possible unifier becau&-

there may be an infinite number of them, as in the case of unifying f(a, z) and fiZ, a) with

unifiers z -- a, x - f(a, a), Variables are constrained to match sequences of arguments

of the other term; variables are not split so that, e.g., f(a, x) and f(l, b) can be matched

with z - f(zl,z2),z2 - b, V 4- f(a, zi) (the value of the variable z is split between v and

b). Completeness can be recovered by augmenting this incomplete unification with a variable-

splitting operation that replaces a variable x by fizl, x2).

The second restriction we impose is that we invoke these special unification algorithms

only if the head (predicate or function) symbols of the expressions match. Thus, although fix, p)

21

and 0 match where 0 is the identity for f (with z -- 0, y 4- 0), this fact will be undetected
because the function symbols of the two terms do not match.

3.4. Extended Matching for Nonequational Theories

Properties like associativity and commutativity are expressed by equational theories,

i.e., lists of equalities or equivalences. It would be useful to apply techniques that are similar

to special unification to nonequational theories, e.g., lists of implications.

The purpose of extended matching for nonequational theories is to extend the match-

ing process used in resolution (the process that ordinarily unifies the arguments of complemen-

tary literals, i.e., literals with opposite polarity, one negated, the other unnegated, with the

same predicate symbol) to a process that matches literals that are complementary according

to the axioms being incorporated into the matching process. Use of the extended matching

process would eliminate the requirement for explicitly using the built-in axioms. Here are some

examples of nonequational theories that occur in natural-language-understanding and many

other applications and that we would wish to build in for efficiency:

e Subtype relations. The assertion Vz.elephant(z) D mammal(z) can be incorporated

into the matching process if matching is permitted between positive occurrences of

the elephant predicate and negative occurrences of the mammal predicate. Thus,

clephant(Clyde) and "-mammal(Clyde) could be treated as complementary literals.

Building in the assertion V.mammal(z) D animal(z) as well would also permit positive

occurrences of elephant or mammal to be matched with negative occurrences of animal.

e Properties. The assertion Yx.elephant(z) D color-of(z, gray) can be eliminated if

matching is permitted between positive occurrences of the elephant predicate and nega-

tive occurrences of the color-of predicate, with its second argument required to match
gray.

* Disjointnes. The assertion V.-man(z) V -,woman(z) can be eliminated if matching is

permitted betwem positive occurrences of the man predicate and positive occurrences

of the woman predicate. Thii is an example of a situation in which literals with the

22

.4' " , , " - , " '" ' -
" '

.. - .. -. -. . . . - .- - . , . - . . -. - - . -. .

- .. . _, . . - . . W" .. , " . - . - - -.,. - - - .., ..- - - . . - . -, . .

same polarity, e.g., man(John) and woman(John), both unnegated, are complementary

literals in the theory.

Similarly, the assertion VzVy.-'z < y V -z > y can be eliminated if matching is

permitted between positive occurrences of the < predicate and positive occurrences of

the > predicate.

* Stronger/weaker predicates. The assertion VzVy.on(z, t) D above(z,y) can be

eliminated if matching is permitted between positive occurrences of the on predicate

and negative occurrences of the above predicate.

Similarly, the assertion VzVi.x < V D z < y can be eliminated if matching is permitted

between positive occurrences of the < predicate and negative occurrences of the <

predicate.

* Permuted arguments. The assertion VzVV.z y v D v = z can be eliminated if matching

is permitted between positive occurrences of the = predicate and negative occurrences

of the = predicate with its arguments permuted.

The assertion VxVpVz.M(z, V, z) : M(V, z, z), where M(:, i, z) means z X i = z, can

be eliminated if matching is permitted between positive occurrences of the M predicate

and negative occurrences of the M predicate with its first two arguments permuted.

The assertion VzVy.z < y m V > z can be eliminated if matching is permitted between

occurences of the < and > predicates with reversed arguments and opposite polarities.

The - and M predicate examples can also be handled by commutative unification.

* Use of residue. The assertion VzVyVz.z < p A V < z D z < z can be partly built in

by allowing inferences such as "from a < b and b < c infer a < c". In this case, a <6

and b < c are complementary literals, provided -'a < e is true. The negation of this

condition is called the residue and is disjoined to the resolvent. So, in this case, forming

a resolvent entails matching and removing a pair of literals and disjoining the remaining
literals plus the residue of the matching operation.

There are numerous advantages to incorporating these assertions into the matching

23

*1q

."1 ' q" " " J * , ' '€ c . ' " " ' "
" '

' -" " " " * " " "" "" '' "" " ' " '.

pr-.ess:

e Deductions are shorter and easier to read. Even if the search space were the same size

(exchanging breadth for depth), the reduced depth would still result in less work because

(though the number of unifications may be comparable) the number of resolvents that

have to be formed would decrease. The saving would be significant unless unification

accounted for nearly all the effort in forming a resolvent.

Incorporation of assertions like YzVy.z = V V g = z in the matching process eliminates,

for example, derivations such as a - b, b - a, a = b,..., where (for efficiency) the

second a = b must either be eliminated (e.g., by subsumption) or not generated (as a

result of restrictions imposed by the control strategy).

The incorporation of a multistep implication chain in the matching process has the effect

of performing the corresponding set of resolution operations on one of the wffs. In doing

so, it effectively imposes a requirement that the atom resolved upon in each of these

resolution operations be the atom introduced in the preceding resolution operation-an

implicit ordering requirement that would otherwise have to be specified by the control

strategy.

If assertions are not incorporated into the matching process, performing a sequence of

resolution operations on a wff with them may result in the generation of a pure atom

(an atom that cannot be resolved with any other atom ; the search space). At least

the last step (and maybe more) of that sequence of operations was wasted effort. If the

assertions are incorporated into the matching process, the match is successful if and

only if the final atom produced in the sequence of resolution operations is not pure.

In addition to the special case of not producing pure atoms (which have a branching

factor of 0), incorporation of assertions into the matching process can (when the possible

matches for an atom are counted) result in a cheaper or better estimate of the effective

branching factor of the atom. If assertions are not incorporated in the matching process,

branching-factor estimates are either cheap and unreliable (if they only count the number

of immediate resolvents) or are expensive (if do tree searching to consider sequences

A,. 24a.!

..

.7o

of resolution operations). Incorporation of the assertions into the matching process

provides more reliable estimates at essentially the cost of the cheap estimate when the

assertions are not incorporated.

9 Because building axioms into extended matching requires the existence of two literals

complementary in the theory, it can, for example, block the infinite derivation of b <

z D a < z, b < x A'z < y D a < V, ... , from a < b, which is ordinarily derivable

even if no other wffs mention a or b, which implies that no refutation is possible.

We are developing the theory of extending matching for the building in of axioms like

those above. Extended matching is similar to Dixon's Z-resolution [Di73] and also to Harrison

and Rubin's U-generalized resolution [HR78]; it should be an extension of both, however,

because it does not restrict the built-in wffs to be length 2 clauses (as Z-resolution does) or be

usable only when unit or input refutations exist, as is the case for U-generalized resolution.

We have also developed a prototype implementation of extended matching that is

based on controlled hyperresolution. Controlled hyperresolution is essentially user-specified hy-

perresolution designating built-in w&f as the nucleus of hyperresolution operations and specify-

ing what atoms of the wff are to be resolved on. Thus, building in Vz.elephant(z) D mammal(z)

entails designating that wff as the nucleus for hyperresolution operations so that, for exam*.

false is the hyperresolvent of elephant(Clyde), -'mammal(Clyde), and -t clephant(z) D

mammal(z). Likewise, a < c is a hyperresolvent of a < b, b < c and the designated nucleus
VzVyVz.z < Y A V < z D z < z.

25

I,

References

[AJ74] Aho, A.V. and S.C. Johnson. LR parsing. Computing Surveys 6, 2 (1974), 99-124.

[Ap82] Appelt, D.E. Planning natural-language utterances to satisfy multiple goals. Technical
Note 259, Artificial Intelligence Center, SRI International, Menlo Park, California,
March 1982.

[Di73] Dixon, J.K. Z-resolution: theorem-proving with compiled axioms. J. ACM 20, 1
(January 1973), 127-147.

[FBK82] Ford, M., J. Bresnan, and R. Kaplan. A competence-based theory of syntactic closure.
In J. Bresnan (ed.), The Mental Representation of Grammatical Relations, MIT Press,
Cambridge, Massachusetts, 1982.

[FF78] Frazier, L. and J.D. Fodor. The sausage machine: a new two-stage parsing model.
Cognition 6 (1978), 291-325.

[FF80] Frazier, L. and J.D. Fodor. Is the human sentence parsing mechanism an ATN?
Cognition 8 (1980), 411-459.

[Ga8l] Gazdar, G. Unbounded dependencies and coordinate structure, Linguistic Inquiry 12,
(1981), 185-179.

[HR78] Harrison, M.C. and N. Rubin. Another generalization of resolution. J. ACM 25, 3

(July 1978), 341-351.

[He72] Hewitt, C. Description and theoretical analysis using schemata of PLANNER: a lan-
guage for proving theorems and manipulating models in a robot. Artificial Intelligence
Laboratory report AI TR-258, Massachusetts Institute of Technology, Cambridge,
Massachusetts, April 1972.

[Hs8l] Hsiang, J. Refutational theorem proving using term rewriting systems. Unpublished
manuscript, Department of Computer Science, University of Illinois, Urbana, Illinois,
July 1981.

[Hue8O] Huet, G. Confluent reductions: Abstract properties and applications to term rewriting
systems. J. ACM 97, 4 (October 1980), 797-821.

[Hul801 Hullot, J.M. A catalogue of canonical term rewriting systems. Technical Report CSL-
113, Computer Science Laboratory, SRI International, Menlo Park, California, April
1980.

[Ki73] Kimball, J. Seven principles of surface structure parsing in natural language.
Cognition 2, 1 (1973), 15-47.

[IKB70 Knuth, D.E. and P.B. Bendix. Simple word problems in universal algebras. In J.
Leech (ed.), Computational Problems in Abstract Algebras, Pergamon Press, 1970, pp.
263-297.

[La75] Lankford, D.S. Canonical inference. "eport ATP-32, Department of Mathematics,
University of Texas, Austin, Texa. .'kc,.mber 1975.

26

[LS75] Livesey, M. and J. Siekmann. Termination and decidability results for string-
unification. Memo CSM-12, Essex University Computing Center, Colchester, Essex,
England, August 1975.

[LS76] Livesey, M. and J. Siekmann. Unification of A+C-terms (bags) and A+C+I-terms
(sets). Interner Bericht Nr. 5/78, Institut fur Informatik I, Universitat Karlsruhe,
Karlsruhe, West Germany, 1978.

[Ma80] Marcus, M. A Theory of Syntactic Recognition for Natural Language, MIT Press,

Cambridge, Massachusetts, 1980.

[Mo80J Moore, R.C. Reasoning about knowledge and action. Technical Note 191, SRI
Artificial Intelligence Center, October 1980.

[Pe82] Pereira, F.C.N. A new characterisation of attachment preferences. To appear in
D. Dowty, L. Karttunen, and A. Zwicky (eds.) Natural Language Processing.
Pegcholinguietic, Computational, and Theoretical Perpective,, Cambridge University
Press, Cambridge, England.

[PS-] Pereira, F.C.N. and S.M. Shieber. Shift-reduce scheduling and syntactic closure. To
appear.

[PS81] Peterson, G.E. and M.E. Stickel. Complete sets of reductions for some equational
theories. J. ACM 28, 2 (April 1981), 233-284.

[P1721 Plotkin, G.D. Building-in equational theories. In Meltzer, B. and Michie, D. (eds.),
Machine Intelligence 7, Halsted Press, 1972, pp. 73-90.

IRS791 Raulefs, P., J. Siekmann, P. Szabo, and E. Unvericht. A short survey on the state
of the art in matching and unification problems. SIGSAM Bulletin 18, 2 (May 1979),
14-20.

[RD72] Rulifson, J.F., J.A. Derksen, and R.J. Waldinger. QA4: a procedural calculus for in-
tuitive reasoning. Technical Note 73, Artificial Intelligence Center, SRI International,
Menlo Park, California, November 1972.

[Si75] Siekmann, J. String-unification, part I. Essex University, Cochester, Essex, England,
March 1975.

[Si76] Siekmann, J. T-unification, part I. Unification of commutative terms. Interner Bericht
Nr. 4/76, Institut fuir Informatik I, Univeritit Karlsruhe, Karlsruhe, West Germany,
1976.

(St77] Stickel, M.E. Mechanical theorem proving and artificial intelligence languages.
Ph.D. Dissertation, Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, December 1977.

[St8l] Stickel, M.E. A unification algorithm for associative-commutative functions. J. ACM
28, 3 (July 1981), 423-434.

[St821 Stickel, M.E. A nonclausal connection-graph resolution theorem-proving pro-
gram. Proceedings of the AAAI-82 National Conference on Artificial Intelligence,
Pittsburgh, Pennsylvania, August 1982, 229-233.

27

.

.

[Wa80j Wanner, R. The ATN and the sausage machine: which one is baloney? Cognition 8,
(1980), 209-225.

[WW821 Winker, S.K. and L. Wos. Procedure implementation through demodulation and
related tricks. Proceedings of the 6th Conference on Automated Deduction, New York,
New York, June 1982, 109-131.

[W'R67] Wos, L., G. Robinson, D. Carson, and L. Shalla. The concept of demodulation in
theorem proving. J. ACM 14, 4 (October 1987), 898-709.

28

5 ,

Zi

FILMED

9 83

DTIC

